Skip
BI4ALL BI4ALL
  • Expertise
    • Data Strategy & Governance
    • Data Visualisation
    • Inteligência Artificial
    • Low Code & Automation
    • Modern BI & Big Data
    • R&D Software Engineering
    • PMO, BA & UX/ UI Design
  • Knowledge Centre
    • Blog
    • Setores
    • Customer Success
    • Tech Talks
  • Sobre Nós
    • História
    • Board
    • Parceiros BI4ALL
    • Prémios
    • Media Centre
  • Carreiras
  • Contactos
Português
InglêsAlemão
Página Anterior:
    Knowledge Center
  • Desbloqueie o poder da IA generativa: Large Language Models nas empresas

Desbloqueie o poder da IA generativa: Large Language Models nas empresas

Página Anterior: Blog
  • Knowledge Center
  • Blog
  • Fabric: nova plataforma de análise de dados
1 Junho 2023

Fabric: nova plataforma de análise de dados

Placeholder Image Alt
  • Knowledge Centre
  • Desbloqueie o poder da IA generativa: Large Language Models nas empresas
26 Fevereiro 2024

Desbloqueie o poder da IA generativa: Large Language Models nas empresas

Desbloqueie o poder da IA generativa: Large Language Models nas empresas

Key takeways

Qualidade e Disponibilidade de Dados são fundamentais para o Sucesso do LLM

Desafios na Privacidade e Segurança dos Dados ao adotar LLM

Dimensão ética dos LLM

Numa época em que os dados são o novo petróleo, mas em que os dados não são informação e a informação não é conhecimento, as empresas estão constantemente à procura de ferramentas inovadoras para aproveitar o seu poder.

Quando falamos de IA generativa, referimo-nos a um tipo de inteligência artificial que se concentra na criação de conteúdos, sejam eles textos, imagens ou simulações complexas. Utiliza algoritmos avançados para gerar resultados novos e originais com base nos seus dados de treino, permitindo-lhe imitar e alargar a criatividade e análise humanas em diversas aplicações.

Com o foco nos Large Language Models (LLMs) – os gigantes de IA como o GPT-4 da OpenAI, o BARD da Google e o LLaMA da Meta, entre outros, estão a revolucionar a forma como as empresas analisam os dados, tomam decisões e interagem com os clientes. Estes modelos têm a extraordinária capacidade de processar e gerar textos semelhantes aos humanos, o que lhes permite realizar tarefas que vão desde a redação de mensagens de correio eletrónico, à redação de ensaios, ao resumo de documentos e à codificação de programas. Apesar do seu potencial, a integração de LLMs nas organizações tem a sua quota-parte de desafios, incluindo a garantia da qualidade dos dados, a manutenção da privacidade e o cumprimento de normas éticas. Neste artigo, vamos aprofundar os benefícios transformadores e os desafios práticos da adoção de LLMs no domínio empresarial.

Qualidade e Disponibilidade de Dados – A Base da Eficácia do LLM: O desempenho dos LLMs depende em grande medida da disponibilidade de dados de alta qualidade. Muitas empresas precisam de mais dados, melhor qualidade de dados e melhor gestão de dados sensíveis. Para combater estas questões, as empresas estão a recorrer a técnicas sofisticadas de limpeza de dados para eliminar imprecisões, validar conjuntos de dados quanto à sua relevância e utilizar o aumento de dados para melhorar o seu material de formação. A anonimização e a encriptação também se tornaram uma prática corrente para utilizar dados sensíveis de forma responsável sem comprometer a privacidade.

Navegar no campo minado da privacidade e segurança dos dados: As capacidades avançadas dos LLMs têm um risco inerente – a exposição potencial de informações sensíveis. As empresas devem estabelecer estruturas rigorosas de Data Governance para proteger a privacidade dos indivíduos e manter a integridade dos dados. Os controlos de acesso, as auditorias regulares e a monitorização contínua constituem a espinha dorsal de uma implementação segura da LLM. Além disso, testes e verificações rigorosos são essenciais para garantir que o conteúdo gerado pelos LLMs seja exato, relevante e não enganoso.

Garantir a equidade – A dimensão ética dos LLMs: Os preconceitos dos LLMs são um reflexo da nossa sociedade, uma vez que aprendem e respondem a partir de dados criados por humanos. Para resolver este problema, é imperativo disponibilizar para estes modelos conjuntos de dados diversificados que representem corretamente diferentes demografias e pontos de vista. A transparência na forma como os modelos são desenvolvidos e a responsabilidade pelos seus resultados não são negociáveis para uma integração ética do LLM. As empresas não se devem concentrar apenas nos aspetos técnicos, mas também no impacto social da implantação de LLMs.

O desafio da integração e interoperabilidade de dados: Um desafio técnico significativo para os LLM nas empresas é a integração e a interoperabilidade com os ecossistemas de dados existentes. A normalização dos formatos de dados e a harmonização entre diferentes sistemas são essenciais para uma integração perfeita dos dados. As técnicas de transformação e os protocolos de intercâmbio, como as API, são fundamentais para garantir que os LLM possam comunicar eficazmente através de diversas plataformas e aplicações.

O potencial dos Large Language Models para revolucionar as empresas é inegavelmente imenso. Prometem elevar a análise de dados, aperfeiçoar os processos de tomada de decisões e criar experiências inigualáveis para os clientes. No entanto, a concretização deste potencial exige uma abordagem cuidadosa da gestão da qualidade dos dados utilizados, garantindo uma privacidade e segurança sólidas, comprometendo-se com normas éticas e conseguindo uma integração perfeita dos dados.

Ao concebermos uma solução para ajudar a escalar soluções de LLM nas empresas, abordamos desafios críticos de uma forma fácil e transparente, com toda a governação necessária num ambiente empresarial. A framework The Fast Track to OpenAI Accelerator não só simplifica a integração destes modelos complexos nos sistemas empresariais, como também garante que são geridos de forma responsável, ética e em conformidade com as normas regulamentares.

Artigo de opinião publicado em:

  • Sapo Tek – janeiro, 2023

Autor

Rui Afeiteira

Rui Afeiteira

CIO

Partilhar

Conteúdos relacionados

Soberania de dados: o trunfo estratégico para as empresas Blog

Soberania de dados: o trunfo estratégico para as empresas

Em 2025, a soberania de dados tornou-se o novo motor de competitividade - transformando volumes massivos de informação em inovação, eficiência e vantagem estratégica.

Deteção de Anomalias: Técnicas, Desafios e Considerações Éticas Blog

Deteção de Anomalias: Técnicas, Desafios e Considerações Éticas

A Deteção de Anomalias identifica padrões invulgares nos dados para prevenir riscos, recorrendo a técnicas de machine learning.

Frameworks orientadas por metadados no Microsoft Fabric: Implementações em YAML (Parte 3) Blog

Frameworks orientadas por metadados no Microsoft Fabric: Implementações em YAML (Parte 3)

Implementações YAML no Microsoft Fabric usam Azure DevOps para validação, estrutura por ambientes e pipelines com aprovações, garantindo consistência.

Frameworks orientadas por metadados no Microsoft Fabric: Logging com Eventhouse (Parte 2) Blog

Frameworks orientadas por metadados no Microsoft Fabric: Logging com Eventhouse (Parte 2)

Logging no Microsoft Fabric com Eventhouse garante visibilidade centralizada e análise em tempo real de pipelines, usando KQL para ingestão escalável.

Como simplificar frameworks orientadas por metadados no Microsoft Fabric com YAML Blog

Como simplificar frameworks orientadas por metadados no Microsoft Fabric com YAML

Simplifique frameworks orientadas por metadados no Microsoft Fabric com YAML para ganhar escalabilidade, legibilidade e integração CI/CD.

Solução analítica em Fabric para garantir Escalabilidade, Single Source of Truth e Autonomia Use Cases

Solução analítica em Fabric para garantir Escalabilidade, Single Source of Truth e Autonomia

A nova arquitetura analítica baseada em Microsoft Fabric assegurou integração de dados, fiabilidade e escalabilidade, promovendo autonomia analítica e preparação para futuras exigências.

video title

Vamos começar

Tem uma questão? Quer iniciar um novo projeto?
Contacte-nos

Menu

  • Expertise
  • Knowledge Centre
  • Sobre Nós
  • Carreiras
  • Contactos

Mantenha-se atualizado e impulsione o sucesso com inovação

Newsletter

2025 Todos os direitos reservados

Política de Privacidade e Proteção de Dados Política de Segurança de Informação
URS - ISO 27001
URS - ISO 27701
Cookies Settings

BI4ALL may use cookies to memorise your login data, collect statistics to optimise the functionality of the website and to carry out marketing actions based on your interests.
You can customise the cookies used in .

Opções para ativar ou desativar cookies por preferência.

These cookies are essential to provide services available on our website and to enable you to use certain features on our website. Without these cookies, we cannot provide certain services on our website.

These cookies are used to provide a more personalised experience on our website and to remember the choices you make when using our website.

These cookies are used to recognise visitors when they return to our website. This enables us to personalise the content of the website for you, greet you by name and remember your preferences (for example, your choice of language or region).

These cookies are used to protect the security of our website and your data. This includes cookies that are used to enable you to log into secure areas of our website.

These cookies are used to collect information to analyse traffic on our website and understand how visitors are using our website. For example, these cookies can measure factors such as time spent on the website or pages visited, which will allow us to understand how we can improve our website for users. The information collected through these measurement and performance cookies does not identify any individual visitor.

These cookies are used to deliver advertisements that are more relevant to you and your interests. They are also used to limit the number of times you see an advertisement and to help measure the effectiveness of an advertising campaign. They may be placed by us or by third parties with our permission. They remember that you have visited a website and this information is shared with other organisations, such as advertisers.

Política de Privacidade